Mathematic analysis on the prospects of indian economic development 印度經(jīng)濟(jì)發(fā)展前景的數(shù)理分析
Cultivation of reflective and critical ability in teaching mathematic analysis 數(shù)學(xué)分析教學(xué)中構(gòu)建反思批判能力的實(shí)踐研究
The infiltration of mathematical ideation and methods in teaching mathematic analysis 數(shù)學(xué)思想方法在數(shù)學(xué)分析教學(xué)中的滲透
The cultivation on innovation ability of mathematic analysis teachers in colleges and universities 高校數(shù)學(xué)分析課教師創(chuàng)新能力的培養(yǎng)
The wavelet transform is a new style mathematic analysis tool developed in 1980s . it has characteristic of multi - resolution 小波變換是80年代后期發(fā)展起來的應(yīng)用數(shù)學(xué)分支,具有多分辨率的特點(diǎn)。
According to the mapping principle of stereographic projection , the combinatorial relationships of line and plane can be solved by use of mathematic analysis 摘要根據(jù)赤平投影的成圖原理,利用數(shù)學(xué)解析的方法,可直接求解有關(guān)線與面的組合關(guān)系。
Thirdly , the system realizes the data processing on - line , customs can gain information timely what they need by the mathematic analysis tool integrated into itself 通過邦定在數(shù)據(jù)庫管理軟件上的數(shù)據(jù)分析軟件,用戶可以方便及時(shí)地對(duì)所需的原始數(shù)據(jù)進(jìn)行實(shí)時(shí)處理,從中挖掘出自己所需的信息。
The wavelet transform is a new style mathematic analysis tool . it is a new theory system developed from the studies of y . meyer , s . mallat and i . daubechies in 1980s 小波分析是一類新型的數(shù)學(xué)分析工具,是二十世紀(jì)八十年代以來在y . meyer , s . mallat和i . daubechies等人的研究的基礎(chǔ)上發(fā)展起來的新的理論體系。
In the paper we introduced the origination of the problem of power system stability and its principle mathematic analysis method . then the effect to the stability of power system by excitation system is illuminated in detail 文中介紹了電力系統(tǒng)穩(wěn)定性問題的由來及其基本數(shù)學(xué)分析方法,詳細(xì)闡述了發(fā)電機(jī)勵(lì)磁調(diào)節(jié)對(duì)電力系統(tǒng)穩(wěn)定性的影響。
It is difficult to solve the container movement track optimization problem by using general method to solve optimization problem such as minimum value method and dynamic plan . this can be seen clearly through mathematic analysis 通過對(duì)集裝箱運(yùn)行過程的數(shù)學(xué)分析可以看出用解決優(yōu)化問題的常用方法如極小值原理和動(dòng)態(tài)規(guī)劃等方法對(duì)集裝箱運(yùn)行軌跡進(jìn)行優(yōu)化是困難的。